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SOURCES OF STRESS IN TWO HALF-SPACES* 

V.P. KOCHUROV 

Solutions are given for two versions of the problem of displacements from a source 
of stresses (the domain of displacement or stress field peculiarities) in two iso- 
tropic linearly elastic half-spaces, on whose plane boundaries conditions relating 
the boundary values of the derivatives of the displacements of different orders are 
satisfied. The method of solution proposed permits expressing the displacement in 
the half-spaces in terms of indefinite integrals of the gradients of the displace- 
ments produced by the stress source in an unbounded homogeneous medium. 

1. 'Formulation of the problem. TWO isotropic linearly-elastic half-spaces z> hi2 
and z < -h/2(2 is the Cartesian coordinate and IL is a constant) with shear moduli ~1 and PI? 
respectively, and transverse strain coefficients Y and v1 are bonded by means of a flat layer 
--h/2 <z<!$? whose properties are given by the following relationship between the strain sp 
and stress (r2 tensors: 

0.5y-'oz=xzJ.ez.J~-X3(kk.~?.JfJ.ez.kk)i-~lkk.en.kk+~2~Z52J..~?J (-1~/2<z<h$, (1.1) 

Here k is the unit vector normal to the middle plane of the layer z = 0, directed toward 
the halfspace z> h/2, J = I - kk, I is a unit tensor of the second rank, XZ,,X~,X,, v2 are dim- 
ensionless positive constants, cis l/(1-2vi)(i = 0,1,2); the point denote the scalar tensor 
convolution operator (a vector is considered a first rank tensor); two vectors between which 
there are no addition, subtraction, multiplication, and equality signs form a dyad; quantities 
(constants and functions) referring to the half-space z> h/2 are provided with the subscript 
0 which is ordinarily omitted (only u and u,, should be distinguished, where their interrela- 
tionship is described by (1.2) below): quantities referring to the half-space z < -hi2 are 
marked with the subscript 1 (the exception is ic = pL1/p) and quantities referringtotheplane 
layer, by the subscripts 2,3,4. 

To particular cases (called "problem 1" and "problem 2") of the following problem are 
considered: Find the displacements u and u1 and the stresses s and sl, respectively, in the 
half-spaces Z> h/2 and z< -h/2 due to a source of stress (zero-dimensional, one-dimens- 
ional, two-dimensional, or three-dimensional domain of singularities of the displacement or 
stress fields) of finite sizes in the half-space z > h/2. 

The displacement uW and stress o, fields produced by the source of stress in an unlimited 
homogeneous medium with the elastic constants p and v are considered known. On the functions 

ucs, u1 and u,,, where 
ug = u -- u, (z > h/2) (1.2) 

there are imposed regularity conditions at infinity 

i=O,a=O, 1 as z>h/:! (1.3) 

IVw<-g(R+~) 
i=l,a=O, 1 as z*<-\L/?: 
i=2,a=O, 1 as -hJ2<z<hi2 
i=;xl,a=O,1,2,3 as --SO<Z<M 

where V s alar, r is the radius-vector ofthe point of observation, R is the distance to the 
source,M is a positive constant (iW< oo), V"z VV . ..V. a times (polyadic product). The 
stress tensor corresponding to the displacements u,, in the medium with elastic constants p 
and v will be denoted by e,,. 

The stress sources considered in the literature /l-33/ are a point force and a combina- 
tion of forces, Somigliana dislocations, centers of expansion, etc. and satisfy the condition 
of decreasing displacements and their derivatives at infinity (1.3) (for i = co). 

Additional assumptions are taken in the following two modifications. 

Problem 1 
vp = 0, x4 = 00, XJ = o (I), h = o (z’), x,h = 0 (z’), h/x3 = 0 (z’) 
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Problem 2 
x4 = m, h = 0 (z’), x&z = 0 (z’), %.& = 0 (z’) 

Here 2' is the distance between the stress source and the middle surface of the layer 
z = 0. 

The boundary value problem for three phases is reduced to a problem for two half-spaces. 
To this end, the method of exclusion of a thin film, described in /4,5/ in applicationtoplane 
problems of elasticity theory, can be utilized. In /4/ and in the equations of the theory of 
thin-walled shells relationships are derived between the stresses and displacements on the 
boundaries of two half-g&xnes separated by a thin curvilinear film. In /S/, approximate con- 
ditions on the half-plane boundary are found in an investigation of the interaction betweenan 
edge dislocation and a thin film on the rectilinear edge of a half-plane, from the equilibrium 
equations and the governing equations of the film material by expanding the displacements in 
the latter in a power series in the distance from the phase separation line. 

In the case of a spatial state of stress under consideration here, the method of expand- 
ing the displacement in a plane layer in a series permits finding the solution of the first 
boundary value problem for a layer (with displacements given on the boundary) to any required 
accuracy. In particular, if terms eontaining the parameter k in powers higher thanthe first 
are discarded in series describing the stress and displacement vectors on the interphasal 
boundaries,'then we obtain the following conditions on the half-space boundaries 

lim (hV.J.Lxz(Vui_52uV).JtaVu.kk]3_2~-'k.cr)1- 
r-kl?+o 

lim (RV.J.[xz(Vui +&u~V).J-~ aVul.kk]-Z~-'k.al}=O 
z--hli--O 

Iim (bh~-ik.s.J-u)+ tim (~~~~-'k,~~.J~u~)=O 

(1.4) 

r-ki2.H 2--h/2--0 

Here in problem 1 

a = 0, b .= 0.51x3, Ez = 1 

in problem 2 

a = xj, b = 0 

The boundary (1.41, (1.5) combines the properties of a 

(1.5) 

(1.6) 

membrane and a layer that is 
elastically resistive to the mutual slip of the half-spaces. It is an extension of the cohes- 
ion and slip boundaries known in the /6,7/. The boundary (1.4), (1.6) is imparted with the 
properties of a membrane plate (is elastically resistive to strains in the intrinsic middle 
plane and to shears in the transverse direction). 

The problems formulated are distinct from the problem examined in /8/ in that the bound- 
ary conditions (1.4) interrelate boundary values of derivatives of different orders for the 
displacements in the half-spaces. 

2. Solution of problem 1. Instead of the fields u and e of the half-space z ‘, hi2 
we seek the fields uO* and uO.+, mirror images of the fields u,, and se, respectively, with 
respect to the z = 0 plane. The functions uO* and (I~* satisfy the elasticity theory equations 
(with the elasticity constants p and v) in the half-space z < --h/2, and the regularity con- 
ditions at infinity. Taking account of the field reflection operations the boundaryconditions 
(1.4) and (1.5) can be formulated as follows: 

iim (~~~V.J~[V(U~*~A+U_+U~)~(A~~~,+U_~U~)VI.J -im (2.1) 
i-+-I#-0 

21”.-~k.(-~ao*.A+u_-~o,))=O 

Ih: oIK1k. (- % .A+o_+a~).J-Z2x~(A.~o~+u_-u~)]=O 

Here AS I - 2kk is the reflection tensor, u_ and (I_ are fields obtained by displacingthe 
fields corresponding to un and o,(z> h/Z) by the thickness of the plane layer h towards nega- 
tive values of z. A representation in terms of vector harmonic functions o,,,w,,o_ in the 
half-space z< -h!2 is used for the dispalcements uo*r Ul> u- 

~~=k.Vo~--c~(z+ h/2) V".q (z <--h/2) (2.2) 

(a,* = a_ = a ZE l/(3 - 4v), tL1 555 l/(3 - 4Y1)) 

Formulas (2.2) express the solutions of elasticity theory problems for a half-space with 
displacements given on the boundary /3/ 

Wi= & ’ U,dfi h- (z < - !j& Ui = lim ui(i =O*, 1, -) 
r> T-+-h,? 
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(4 is the distance to the element, dr, of the interfacial surface, rl between the plane 
layer and the half-space z< -h/2). With respect to the function u_, the representation (2.2) 

(i = -) can be considered still as the analytic continuation of values of the function u_ in 
the plane z = -hi2 to the half-space z < -h/2 . 

Substitution of (2.2) into the boundary conditions (2.1) results in the following bound- 
ary conditions for the harmonic functions 

lim (xzh(k.V)J.[-VV2+(k.V)21]~J~(A~Oo*+~_t_~~)$ 
z--h/Z-Q 

(2.4) 

2[--aVa-(1 -2a)(k.V)Vk+(k.V)kVf 
(k.V)aIJ.(A.wo*+m_)+ 2x[-a~V2+(k.V)Vk- 
(1-2al)(k.V)kV+(k.V)aI].wl)= 41im r 

r---h,*-" 
lim [hJ. (I- aVa - (1 - 2a)(k.V)Vk+ (k.V)aI].(A.oo* + o_)- 

z-f-h,2--0 

2xs(k.V)(A.00, + 0_--~)]=2h lim J.T 
z--h/l--D 

Operator expressions are used in (2.4) and (2.5) and henceforth, in which it is under- 
stood that the Hamilton operator V acts on thefunctionof c nearest on its "right"; by defini- 
tion this operator does not act on a function of z, hence V(zT) E zVT E z(VT)(T is an arbit- 
rary tensor function of r); the gradient of z is always denoted by k. 

The left and right sides in conditions (2.4) are the boundary values of certain harmonic 
functions expressed in terms of r and the partial derivatives of oO*, at, o_. Accordingtothe 
Dirichlet theorem /3/, the functions mentioned should agree in the whole half-space z< -h/2. 
Therefore, we obtain a system of two vector partial differential equations of the form (2.4) 
withthelimit signs removed (lim as z -+ -h/2 -0) for the harmonic functions 00~ and o1 
in the domain z < -h/2. 

The solution of the system of equations for the functions OO* and o1 is foundinthe form 

I.7 2 z 
oi= Ai dz 

s s 
va * o_dz + Bi 

s 
Vk.o_dz+Ci 

s 
kV.o_dz + (2.6) 

-cc -@a --9 --m 

(Aij { dz f V2.m_dz+ Bij 
s 
* Vk*o_dz+Cij { kV*o_dZ+ 

Dijki*i_ ;$je_)dZ 
-Q 

(2 <rh/2; i = O*, 1) 

where 
Qj, Ai, Bi, Ci, Di, Ei, Aijt Bij, Cij, Dij, El/, (i = O*, 1; i = 1, 27, * *T K) 

are constants (complex numbers), K is a positive integer. Such a form of the solution is due 
to the property of harmonicity of the required functions OO*, o1 and the known function o_.Upon 
substituting (2.6) into the vector equations, a system of 54 (K = 4) linear algebraic equa- 
tions is obtained, from which all the constants of the right side of (2.6) the eigennumbers 

01 (i = 1, 2, 3, 4) are nontrivial solutions of subsystems with zero determinants are found (ex- 
pressed in terms of the elastic constants of the materials). After this, by using the 
representations (2.2) (i= O*, I), and 

o_= i u_dz+O.55 i (z+h/2)dz j Wu_dz (z<-h/2) 
-m -m --cm 

(2.7) 

in formulas (2.6), the passage from the functions Woz @,,o_to the functions "ot, ul, u_ was ac- 
complished and also the necessary field reflection operations were performed. In final form, 
the displacements in the half-spaces u and u1 were expressed by indefinite integrals of part- 
ial derivatives of the functions u* and u_, where u* is a vector that is the mirror image of 
the vector u,(z< h/2) with respect to the plane z=h/2. 

3. Particular cases of problem 1. For h =0(x,< o~;x~>O) the case of twobonded 
half-spaces holds: 

lim u = lim u1 , limk.o= lim k-o1 (3.1) 
r-+0 I_-_0 z-to n---O 
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The solution of this problem is obtained by expanding the solution of problem lin apower 
series in small parameters and discarding terms containing such parameters: 

(3.2) 

b+& f) f (~k+dk~).ULdj+~[2kkt_ 
a 

2uz (kV - Yk) - a;z2P] . u* (z:: 0) 

2 (d;f 
-c.z -,x 

$(+ -%)z fv..“_dz++.(+++- 
-N 

+) 5 kV.u,dz+(l -q(+ - f) 5 Vk.u,dz (z<n) 

p GE cc TX, ’ p1 5s 1 + qx, y = 1 + ,” q = 0.5/(1 - Y) 

The problem (3.1) is solved by UsingtheTrefftz representation in the paper /8/. In the 

uarticular case of a point force, the solution (3.2) agrees with the solution presentedin/6/. 

For xp = 0, x,+0, h-+0, x,/h = 0(1/z’) the slip boundary conditions are obtained 

lim k.u= lim k.ul, lim kk..o= lim kk..q, lim k.a.J:= limk.aI.J=O 
z--to z---o Z-4-0 i---o 240 z---o 

The solution of this problem has the following form 

2 $1 -a)Pk+:l +a)kV] 
s 

.u,dz+2[2kk+2az(kT-Vk)- 
m 

CL~zT]. u* 
i (z> 0) 

1-I a 
u’ = 2 k B + &) 

{$(l +a) 5 dz f F.u,dz- 
-c.Z -a 

2 s; [(I -q)Vk +(a,+ + l)kV] .u,dz + 
-cx 

r;(+l)z s’h,dz+2[2kk+ ( 2al +kV- ‘Ck 
) 

- 

al~zq .I,, la(B .< 0) 

For a point force, a solution agreeing with the solution in /7/ is obtained from 

4. Solution of the problem 2. Problem 2 is solved by the method elucidated 

2. The vector harmonic functions oO* and 01, giving the solution of this problemin 

ity with (2.2) and (2.7), are expressed as follows: 

(3.3) 

(3.4) 

(3.4). 

in Sect. 
conform- 

(4.1) 
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2ch (p~)LL.,_(r,)]dz~+~$exp(- $9) x 

[ 5 dzz { Vs"+_(r.3) dzg - s (V,k + kV,).o_(rs) dzz + 

c(rd] dzl (z < - k/2) 

oo*=A.(ol--_)(z<-kh/2),V,=~(n=1,2,3), 
n 

JP 1 [ XI (1 + 51) +$I 
4es1 

g= p2- X&(1$-&) [ I 
I'* ($2 0) 

Here zlr $,ZQ are variables of integration, r1,r2, r3 are obtained from r by replacing z 
by zl,z2, z3 , respectively. The triple integrals expressing the displacements in the half- 
spaces can be converted into single integrals by integration by parts. However, such a con- 
version results in more awkward depiction of the results, which becomes especially inconven- 
ient in going over to the displacements from specific sources of stress. 

The solution (3.2) is obtained in the particular case h=O. 

5. Two-dimensional boundary value problems. The solutions obtainedforproblems 
1 and 2 are valid even for the plane state of strain if Rin the regularity conditions at in- 
finity (1.3) is understood to be the distance to the source on the plane. It should be kept 
in mind that the most important sources of stress, the point force /9/ and the dislocation 
/lo/, do not satisfy the condition (1.3) (for i = m). Nevertheless, the uniqueness of the 
solution of the problem will be assured if each such source is considered as a component of 
a system of sources for which the sum of the characteristic vectors (the force vectors, the 
Burgers vectors, etc.) is zero. 
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